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Abstract

This research attempts to address problems involved with the mapping of remote rocky reefs.
Object-Based Image Analysis (OBIA), through Definiens Developer software, of visible-band,
high-resolution remote-sensed (aerial) imagery is used to partition and classify the reef regions
using a combination of segmentation techniques and spectral as well as context based rules.
The derived ruleset partitions imagery into features (vector polygons) that may be used with
Geographic Information Systems (GIS), and describes four broad but distinct habitat classes.
Production of maps from such output are at a meaningful scale, acting as a baseline for
generating a refined habitat classification using the Joint Nature Conservation Committee’s
approved marine classification system – the Marine Nature Conservation Review BioMar
hierarchy. While further work is needed to refine the results, this baseline is of utility to
ecologists and managers, for monitoring and further ecological studies of rocky reefs.
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Chapter 1

Introduction

The marine environment incorporates some of the most diverse and least well understood

regions in all of the Earth’s biomes, and is fast becoming a focal point for political and public

environmental concerns. There is renewed interest in the current status and protection of

these environments (for example, with the recent introduction of the UK Marine and Coastal

Access Bill), a consequence of which is the requirement of important work toward establishing

ecological baselines for our shores, evaluating location of Marine Protected Areas (MPAs),

and subsequent monitoring. In the current research we explore the use of Object Based

Image Anaysis (OBIA) for the classification of habitat types using an established classification

scheme.

The structure of the rest of this work is as follows; we first introduce the region of inter-

est, and explain its character and value. Following introduction, we explore the biotic and

abiotic factors that determine habitat regions on rocky shores, and how these have been used

to identify, classify and lend protection to ecologically important regions. Remote Sensing,

the technological foundations to this work, is described in the context of environmental man-

agement, succeeded by introduction of the approach used – OBIA – and how it has been

1
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previously applied. The methods used are described, for both the (main) OBIA portion of

the work as well as that of a field survey conducted as part of this exploratory research. We

analyse the different techniques attempted during the classification and inspect the final rule-

set. The research is concluded with a discussion of how it may be applicable to management

of marine and coastal environments, the consequences of its use and a critical evaluation of

the limitations and weaknesses, and potential for improvement and extension.

We begin then, with an introduction to the region of interest. . .

1.1 Les Îles d’la Manche

Les Îles d’la Manche (or Channel Islands), situated near the French coast in the English

Channel, consist of several large islands bordered by small rocky outcrops, it is these outcrops

that form the area of interest for the current research.

Above, the islands are referred to by their local (historic) name, and this is by no means

a mistake; the Islands make up the most Southerly part of Britain, more contained by France

than any English speaking neighbour, and Jèrriais (a Norman-French derivative) is Jersey’s

native language – now relatively unused. The remainder of the current research will make no

apologies for referring to study areas by their French, Jèrriais or English nicknames; readers

should not be surprised by interchange between the formal and colloquial names, particularly

when reference is made to datasets (for text-encoding reasons, if not for ease of use).

1.1.1 Jersey

Before introduction of the rocky reefs (‘rocky reefs’ being defined after Diesing et al. (2009),

and hereon simply referred to as ‘reefs’), it would be wise for the reader to be familiar with

the islands themselves, and become acquainted with one in particular; Jersey. The island of
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Jersey is the largest and furthest south of all five islands (whose approximate 46 square miles

of area equals that of all the other islands together), around which the reefs of interest are

situated (Beechey-Newman 1957). Physically, Jersey is a low plateau that dips toward the

south, the geology of which presents large granite beds to the north-west. The island and

surrounding reefs were once part of ‘Armorica’ – the ancient region of what is now France

– connected by the now submerged sediment, consisting of slope deposits and wind-blown

loess (Renouf & Andrews 1996).

1.2 The Reefs

The reefs around Jersey form the basis of this research. Les Minquiers (Jèrriais: ‘Les

Mı̂ntchiers’, English: ‘The Minkies’) to the South, form the largest of our 3 sites. Les

Écréhous (Jèrriais: ‘L’s Êcrèhos’) in the North-East has the largest settlement (the only

other consisting of one building and a helipad on the Minkies), and is accompanied by Les

Dirouilles to the West. Les Pierres de Lecq (Jèrrias: ‘Les Pièrres Dé Lé’, English: ‘The

Paternostas’) – to the far West – while geographically part of the same reef, shall be referred

to exclusively for the current research (figure 1.1). Below, we further acquaint ourselves with

the reefs, focusing on the Écréhous for which there is most available literature, and whose

past and present is most anthropogenically active.

1.2.1 Geography & Geology

All three of the reefs that form our areas of interest (AOI) are visible from the island of Jersey,

which gives some impression of their proximity (though on a clear day it is also possible to

see the coastline of Normandy). The reefs to the North of Jersey lie approximately 6 miles

(9.5 kilometers) away, with the Écréhous only 8 miles (11 kilometers) from France (Renouf
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Figure 1.1: Locations of the three reefs around the island of Jersey.

& Andrews 1996). The Minkies to the South are ∼13 miles (21.5 kilometers) offshore, whose

nearest neighbour are the French Îles Chausey (∼11 miles, 17.5 kilometers).

Though previous work exists, the geology of the reefs are best described by MJ Andrews

in Renouf & Andrews (1996). In the chapter, the main rock types and formation of the

Écréhous are established (see below), as is the geographic history. The reefs are formed from

the same landmass as the main islands; indeed, until 5000 BC all of the archipelago were part



OBIA for Classification of Rocky-Reefs – 1, Introduction 5

of what is now France, the sea level being such that the stretch of land between the islands

was exposed, and forested (Renouf & Andrews 1996). All three of our areas of interest are

geologically similar, though the North areas of the Minkies consist of a darker Diorite rock

type than the Écréhous (MJ Andrews, 2009 pers. comms.).

The majority of rock consists of pink muscovite-granodiorite – a type of granite with

foliated with micaceous minerals (MJ Andrews, 2009 pers. comms.). There are essential lin-

eaments predominantly from East-North-East—West-South-West and West-North-WestW—

East-South-East with other important lineaments also aligned to North-North-West—South-

South-East and North-North-East—South-South-West. Other major features of the rock-

beds include ‘structural grain’ (Renouf & Andrews 1996) which can be identified in the

aerial images as areas of very fragmented rock (see figure 1.2, compare with overlay figure

1.3).
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Figure 1.2: A photogeological interpretation of the Écréhous, with rose diagram showing direction of lineaments
(Renouf & Andrews 1996).
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Figure 1.3: Main reef at the Écréhous, overlayed with geology from Renouf & Andrews (1996) (see figure 1.2).
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1.2.2 Biology & Marine Environment

Rocky-reefs are known to be rich in biodiversity (Taylor 1998), and the three reefs in our

study area (Figure 1.1) also have several abiotic factors which further elevate their value.

Firstly, the tidal range of the area can exceed 12 metres, and constitutes one of the largest

tidal ranges in the world (Rodwell 1996). The land area of Jersey increases from 117 km2 at

high tide to 163 km2 at low tide; the land area of the reefs increases similarly, with a total

area of over 155 km2 exposed at low tide. This presents a huge area of myriad intertidal

habitats, making these reefs valuable to many different fauna and flora (Bossy 1996).

The reefs are fed by clean, well oxygenated water, positioned in Le Golfe Normano-

Breton; their location bordering both the cold and warm temperate marine biogeographical

regions. These factors, together with the large tidal range, differing wave energy conditions

and variety of substrata provide for an unusual assemblage of species, including species at the

limits of their distribution; the combination of these features makes these sites rare and thus

important locations for conservation and research (Freeman 2000, 2005b,c,a, Bossy 1996).

In and around the reefs, large teleost fish stocks are supported, particularly the european

sea bass (Dicentrarchus labrax ) and mackerel species (Scromber spp., Trachurus spp.) owing

to the abundance of food species and high tidal stream rate (figure 1.4). There is an abun-

dance of bivalves (Pecten maximus, Venus verrucosa), the gastropod Buccinum undatum,

various edible crustaceans (Cancer pagurus, Maja squinado, Homarus gammarus) and the

local ‘delicacy’, the Ormer (Haliotis tuberculata) (Bossy 1996). The high productivity of the

areas has, in the past, caused conflict with the French – the outcome of one such dispute

(after the French proposed the use of the Écréhous for tidal power) resulting in the even-

tual designation of ownership to Jersey by the courts of Hague, in 1953 (Beechey-Newman

1957). The abundance of edible organisms, combined with viable access here naturally lead

to increased anthropogenic activity, and associated disturbance and pollution.
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Figure 1.4: The tidal stream around the Channel Islands. Note the high rate around the reefs (zoomed); classed as
‘Very Strong’ by the JNCC’s habitat-classification scheme (see section 2.1.2). Adapted from The United Kingdom
Hydrographic Office (UKHO) (2008).
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There are several notable species that can be found in and around the sites. At least

seven Cetacean species have been noted, including: Tursiops truncatus, Delphinus delphis,

Lagenorhynchus albirostris, Grampus griseus, Stenella coeruleoalba, Phocoena phocoena and

Globicephala melas, all of which are protected under the Conservation of Wildlife (Jersey)

Law, 2000. Additionally, Acipenser sturio – an IUCN listed (‘Critically Endangered’) species

as well as an IUCN listed ‘Vulnerable species’ – Cetorhinus maximus may be found within the

geographic area of the reefs. Less mobile species such as Actinia equina and H. tuberculata are

also present – the latter of which is considered to be at its northern limit-of-range (Freeman

2005b,c,a).

1.2.3 Ramsar Designation

The Channel Islands themselves host several endemic species, in part due to their isolation,

large range of habitats and mild climate. Their geographic location, in the English Channel,

complements these factors and lends opportunity for migrating birds and in 2000, the South-

East coast of Jersey was designated a Ramsar wetland site of international importance (ID

1043) (Ramsar 2009). This site (for which an ecological baseline is currently being established

by Plymouth Marine Laboratory (PML)) provides for a large number of Brent Geese (Branta

bernicla, as well as the more rare visitor ssp. B. bernicla bernicla and B. bernicla hrota

(Young et al. 2008)), for example, during their over-winter migration from the Arctic to

Northern Europe. The South-East coast supports extensive beds of Zostera spp. (seagrass)

(Jackson et al. 2006), which are both an important food source for the geese as well as being

highly productive primary producers, sediment stabilisers, and nutrient cyclers (Waycott

et al. 2009).

In 2005, the 3 reefs were also given the Ramsar designation – Les Écréhous & Les

Dirouilles, ID 1455; Les Minquiers, ID 1456 and the Paternosters, ID 1457 (Ramsar 2005,
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2009). The reefs consist of similar vegetation and geology to the South-East Ramsar site, and

support many common marine avian species, providing breeding grounds for Eurasian Oyster-

catchers (Haematopus ostralegus), Rock Pipits (Anthus petrosus and recorded migrant visits

of ssp. A. petrosus littoralis), Common Terns (Sterna hirundo), European Shags (Phalacroco-

rax aristotelis – whose breeding status is currently poor), Great Cormorants (Phalacrocorax

carbo), Lesser Black-backed Gulls (Larus fuscus) and Herring Gull (Larus argentatus, also

showing recently declined breeding), among others (Young et al. 2008). The status afforded

by the Ramsar designation brings focus to the reefs, and such status has in the past been

shown to improve social concern and government expenditure on such areas (Gardner et al.

2009). It is in part because of this designation that mapping is of interest to the Government

of Jersey.

1.3 Aims of the Research

Having now become acquainted with the region of interest, and aware of the importance of

and protection given to the reefs, we establish the exact aims of the current research, before

continuing to explore the related literature.

The current research aims to:

1. Establish the main biotopes located in the intertidal zone of the reefs, with regard to

the chosen habitat classification system.

2. Be able to extract habitat classes from visible-spectrum aerial photography.

3. Explore Object-Based algorithms in order to determine the most appropriate manner

in which to extract habitat classes from the available data.

4. Produce useful, usable habitat class maps.



Chapter 2

Background

With respect to the aims of this research, above, this chapter will explore the available

literature and establish the state-of-the-art with regards to OBIA. We begin by becoming

acquainted with relevant biology of the marine environment, with particular regard to rocky

shores. Recent and relevant habitat classification systems are explored, and the classification

system to be used in the current research is described. Remote Sensing (RS) is introduced,

with an emphasis on RS for environmental study/monitoring, and applications of OBIA are

discussed as well a brief comparison to more traditional classification techniques.

2.1 Marine Environment

The marine environment is of crucial importance in biogeochemical cycles, and essential for

the functioning of current life on Earth. As well as being the first environment in which life

evolved, it acts as a carbon dioxide sink (Siegenthaler & Sarmiento 1993), directly affects

meteorological systems and feeds billions of people — the average consumption of fish and

crustaceans, 2003–2005 was 16.4 kg/year (world-wide, per capita) (FAO 2006). It is an

12
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incredibly complex environment with many interacting biotic and abiotic factors, temporal

changes and vast spaces; the focus of this research, however, is on the rocky shores, whose

intertidal zones are diverse both taxonomically and in terms of habitat types.

2.1.1 Rocky Shores

Rocky shores present myriad habitats, within which a range of intertidal and sublittoral

organisms may colonise – they are rich in biodiversity (Taylor 1998). Acting within these

habitats are a great range of key biotic and abiotic variables; of particular relevance are wave

energy (sometimes referred to as ‘exposure’ though this may be confused with other variables

relating to vegetative cover) and tidal emersion time, which principally affects organism

distribution according to desiccation tolerance. These two abiotic variables offer interacting

clines along which communities with differing species (particularly sessile) compositions may

exist. It has long been recognised that these crucial factors affect the expected broad pattern

of community type for a given area of the shore, with biotic interactions (predation, resource

competition etc.) operating at finer scales (Little & Kitching 1996).

Ballantine (1961), defined a scale upon which organism distribution could be related to

one particular abiotic factor of the local environment – that of exposure (wave energy). Real-

ising the ambiguity and incomparability of some terminology used by researchers, Ballantine

developed the exposure scale based on standard biological (community) trends seen across the

range of wave-action affected sites. Though the definition of Ballantine’s scale is tautological

in nature – in that it uses community structure to define exposure that affects community

structure – it provides for comparative analysis, forming a constant around which other vari-

able parameters (such as salinity) can be further investigated. The Ballantine scale identifies

negative (compelled to shelter) or positively (tolerant of high-energy) correlated occurrence

of species. For example, Pelvetia canaliculata is negatively correlated with wave-energy –
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Figure 2.1: Ballantine’s exposure (wave energy) scale from 1 (extremely exposed) to 8 (ex-
tremely sheltered) (Ballantine 1961).

it is absent from sites of high-exposure, while Alaria esculenta, which occurs sub-tidally, is

positively correlated with high wave energy environments (figure 2.1). Current literature

consistently reasserts the importance of wave exposure, and the way it affects many other

abiotic factors that influence community structure (see for example Wernberg & Connell

(2008), Gaylord (1999)).

While Ballantine (1961) exploits the community ‘zone’ patterns to form the (qualitative)

biological scale of exposure, McQuaid & Branch (1985) present a quantitative analysis of

different exposures, and relate this to the trophic structure of the community. McQuaid &
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Branch found that there was a strong relationship between wave exposure and trophic struc-

ture, affecting the biomass of the important species in the community (but not species rich-

ness). They find that on sheltered shores, macroalgae form the largest component of biomass,

and thus the community is a net producer (exporter) of energy, derived from macroalgal pri-

mary production, while on exposed shores where filter-feeders form the largest component

of biomass, the system is a net consumer of energy. It should be noted that ‘exposed’ and

‘sheltered’ in the study areas of McQuaid & Branch would be rated ‘extremely exposed’ and

‘exposed’, respectively, by European standards.

The clines described above, and their causal factors, form identifiable zonation patterns

on the shore (Little & Kitching 1996). The community zones around the British isles typically

conform to Ballantine’s descriptions, however, in any such attempt to rigidly define natural

systems will result in some discrepancy, and Ballantine concedes this in his paper. The

macroalgal zonation patterns certainly experience variance when moving from the waters of

the United Kingdom to the shores of the Channel Islands. Trowbridge & Farnham (2004)

identify variance in the littoral communities around Jersey, showing that Codium species’

distribution across the tidal gradient differs from that of sites studied around the UK, nearby

Guernsey and the French coast. Explanation may be due to Jersey’s geographic location lying

in the centre of the Codium species’ distributional range. Trowbridge & Farnham’s study

shows that while generalisations are useful, field-surveys are a necessary requirement for

classifications in environments where great variability exists.

One other aspect that helps describe habitats of rocky shores (and indeed other aquatic

environments) is the sediment type. For this purpose, Wentworth describes several aggregate

classes, with particle sizes ranging from 1
2048 mm diameter (clay) through to ≥ 2048 mm

(boulders); see table 2.1. This abiotic factor is crucial to many organisms – while some

faunal members require interstitial spaces in which to breed, others (e.g. the Polychaetea and
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Oligochaeta) require fine sediment with which to construct or bore their particular habitat.

Flora, too, are affected by the sediment type and increased movement of sediment affects

settling (or recruitment) of algal species (Schiel et al. 2006).

Table 2.1: The Wentworth scale of sediment particle sizes (Wentworth 1922).

Particle size (mm) Class Subclass

> 256 Boulder
64 – 256 Cobble
4 – 64 Pebble
2 – 4 Granules
1 – 2 Sand Very Coarse
1
2 – 1 Coarse
1
4 – 1

2 Medium
1
8 – 1

4 Fine
1
16 – 1

8 Very Fine
1
4 – 1

2 Medium
1

256 – 1
16 Silt

< 1
256 Clay

It is through identifying such factors and providing robust scales upon which we may

predict the likelihood of particular species assemblages, as well as through rigorous field

surveys, that we may begin to accurately classify, better understand and hence better manage

such environments.

2.1.2 Habitat Classification, Reserves & Management

Classification and mapping of habitats has long been practiced to aid management and

conservation. Terrestrial systems have benefitted from such endeavours for decades, with

mathematical strategies (Margules et al. 1988) and underlying principles (Pressey et al. 1993)

being identified to aid reserve selection. Marine environments present difficulties for habitat

mapping due to their variable nature, large coverage and harsh conditions, and thus effective
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selection for management and protection has been somewhat slower and more problematic.

Parameters

Much work is currently being done in the field to establish parameters and procedures for

selecting reserves (Kelleher 1996), including a recent report for the Countryside Council for

Wales which aims to identify Highly Protected Marine Reserves (HPMRs) (Roberts et al.

2008).

With the collapse of marine capture fisheries world-wide, the consequence of industrial and

indeed, smaller scale fisheries practices (Pauly 1998), the establishment of marine reserves,

and management thereafter, is ever more important as part of a toolkit to protect fisheries

and more importantly, the marine food web upon which they depend (Roberts et al. 2005).

Gladstone (2002) suggest the use of indicator species in the rocky intertidal zones for

the selection of marine reserves, following successful terrestrial methods. Gladstone assessed

the use of molluscs and macroalgae for this purpose, and concluded that indicator mollusc

species may provide valuable insight into total species, though concede that this approach

is not without limitations due to the spatio-temporal variability of marine environments.

These findings are in agreement with Ward et al. (1999), who posit the use of fish and

invertebrate species assemblages as surrogates for biodiversity indices when selecting reserves

that constitute ∼ 10 % of an area, while habitat selection is preferable when able to reserve

≥ 40 % of an area.

Roff & Taylor (2000) argue that delineation and mapping of habitats in the marine envi-

ronment are crucial to managing these areas. By mapping and classifying habitats, resources

can better be focused where they are needed. Roff & Taylor considers a geophysical classifica-

tion scheme, arguing that marine ecosystems are crucially connected to physical parameters

and influenced across a range of spatial-temporal scales. Using geophysical parameters allows
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for classification in a ‘top-down’ manner, rather than a species-centric ‘bottom-up’ classifi-

cation. The ‘top-down’ approach requires knowledge of the correlations between species and

physical parameters, but removes the need for direct surveying of organisms – part of the

benefit of remotely sensed data, and the only practical way to map and classify the marine

habitat. Using geophysical parameters for classification also makes the classification hierar-

chy reusable, allowing interpretation of classification at the lowest (community and species

levels) to be applied by means of more localised parameters.

Management of marine areas, then, can only be achieved through careful consideration

of ecological and socio-economic parameters of a given site. Combining knowledge of habitat

types with ‘human-use’ parameters allows for effective decision-making with regards to where

and to what extent management areas should extend. Roberts et al. (2003) evaluate criteria

for selection of marine management areas, adopting a more biology-centric approach than

other management criteria. Roberts et al. (2003) posit that in order to ensure the effective

choice of management areas, it is the underlying biology that is crucial to selection; with

increased biodiversity or biological value comes greater returns in the long-term, providing

dividends to fisheries and other human activities through careful protection of the sources.

In agreement with Roff & Taylor’s classification parameters, Roberts et al. recognise that

whether it is species or habitat that are focused on for protection, it is important to cover

all biogeographic regions; representation of all habitat types is essential.

Heterogeneity of a management area, therefore, is highly desirable: increased number of

habitats of a given area supports a greater diversity of invertebrate species, for example.

Benedetti-Cecchi et al. (2003) identify spatial heterogeneity as an important factor for man-

agement of Marine Protected Areas (MPAs), noting that there may be lower conservation

value in designating an area of low heterogeneity for protection; they show that 2 unprotected

areas incorporating more varied habitat types encompass assemblages found in a spatially
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close (but variably distant) MPA.

There is an express need to know what habitat types exist; either as a direct measure of

biodiversity, for consideration in a wider zonation system (e.g. Ortiz-Lozano et al. (2009))

or simply as a baseline for further studies.

In general, the literature uses several key parameters upon which classifications are based:

1. Exposure (Wave Energy)

2. Tidal amplitude and bottom slope

3. Nutrients stratification

4. Light

5. Water masses (as a function of temperature and salinity signatures)

6. Temperature

7. Salinity

8. Sediment type

Classification

At national and international scales, classification systems have been developed to aid gov-

ernmental policy and land management. The European Environment Agency have conducted

extensive work to produce the EUNIS (European Union Nature Information System) habi-

tat classification system, which covers both terrestrial and marine systems1. This system is

compatible with several national-scale classification systems such as UK BAP (Biodiversity

Action Plan), OSPAR (Oslo-Paris Convention for the Protection of the Marine Environment

of the North East Atlantic2), the Council Directive 92/43/EEC (1992), and the JNCC’s

Marine Habitat Classification system (Connor et al. 2004).

1http://eunis.eea.europa.eu/habitats.jsp
2http://www.ospar.org/

http://www.ospar.org/
http://eunis.eea.europa.eu/habitats.jsp
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Mumby & Harborne (1999) introduce a standardised hierarchical scheme for mapping of

coastal reefs in the Caribbean. They describe means to ensure confusion is reduced when

interpreting results from remote-sensed class maps, for example by using coarse descriptive

resolution for classes where there is uncertainty (for example, where depth may not be cer-

tain). They also use a combination of geophysical (abiotic) features coupled with biotic

features to classify regions, so for example “low relief spur and groove + branching corals” is

used to elevate the flexibility and ability to interpret community type from resulting maps.

Mumby & Harborne also state the importance of using class labels that correlate well to the

end-users’ interpretation of them – where ambiguity exists, or where technical detail is too

high, a compromise should be found.

Howes (2001) presents the ‘Biophysical Shore-Zone Mapping System’ used in British

Columbia and the Pacific North-West. The use of ‘bio-bands’ (distinguishable component

communities, or biotopes) in the shore-zone is made to establish shore units (see defini-

tion, below), which can then be sub-divided into components depending on their physical

characteristics.

“a change in one or more components (form or texture) or in the process(es)

operating in the shore zone”

– Definition of a shore unit (Howes 2001)

The classification system that we will use in this research will be the Joint Nature Conser-

vation Committee (JNCC) approved system as defined by Connor et al. (2004) (henceforth

referred to as the Marine Nature Conservation Review (MNCR) BioMar system). This

system, refined from earlier projects, is structured to enable detailed classification in a sci-

entifically sound, ecologically grounded manner, whilst being clear and sufficiently broad
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enough that it can be used by the layman (Connor et al. 2004). The classification specifi-

cation explicitly states that the system should be used in conjunction with GIS technologies

in order to be useful, and hence is highly appropriate for this task. Furthermore, although

the Channel Islands are not technically part of Britain (and hence does not fall under the

JNCC’s ‘jurisdiction’), this classification is followed by Jersey’s Environment Department as

it is ‘best practice’.

The MNCR BioMar classification is hierarchical and hence can be used at different levels

(Table 2.2). The 5 broad habitat types are as follows: littoral rock, littoral sediment, infralit-

toral rock, circalittoral rock and sublittoral sediment. Further classification follows up the 6

levels, and becomes more well defined; this classification is recorded in a coded way. Factors

involved in the classification follow other published parameters for marine classification (e.g.

Roff & Taylor (2000)) and include salinity, wave exposure, tidal currents, zone (i.e. supralit-

toral to lower circalittoral) and substratum, as well as the species assemblage in the habitat

space (Connor et al. 2004).

The MNCR BioMar classification uses definitions of wave exposure (table 2.3), sedi-

ment type (after Wentworth (1922)), zonation (figure 2.2), salinity and both vegetative and

macroinvertebrate species composition. In Methods (chapter 3), following, this classification

system will be used both in the field survey and during classification. Though the classifica-

tion system makes use of many biotic and abiotic factors, the current research is only able

(at present) to use these in a limited fashion, due to the feasible descriptive resolution that

can be achieved in the scope of the current study.
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Table 2.2: MNCR BioMar Marine Classification Hierarchy

Level Classification Class Count

Level 0 Environment (marine) 1
Level 1 Broad habitat types 5
Level 2 Main habitats 24
Level 3 Biotope complexes 75

Levels 4 & 5 Biotopes and sub-biotopes 370

Figure 2.2: Shore profile, showing littoral zones (Connor et al. 2004).
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Table 2.3: Wave exposure definition (Connor et al. 2004).

Wave Exposure Description

Extremely exposed This category is for the few open coastlines which face into prevailing wind and
receive oceanic swell without any offshore breaks (such as islands or shallows) for
several thousand km and where deep water is close to the shore (50 m depth contour
within about 300 m, e.g. Rockall).

Very exposed These are open coasts which face into prevailing winds and receive oceanic swell
without any offshore breaks (such as islands or shallows) for several hundred km
but where deep water is not close (>300 m) to the shore. They can be adjacent
to extremely exposed sites but face away from prevailing winds (here swell and
wave action will refract towards these shores) or where, although facing away from
prevailing winds, strong winds and swell often occur (for instance, the east coast of
Fair Isle).

Exposed At these sites, prevailing wind is onshore although there is a degree of shelter because
of extensive shallow areas offshore, offshore obstructions, a restricted (< 90◦) window
to open water. These sites will not generally be exposed to strong or regular swell.
This can also include open coasts facing away from prevailing winds but where strong
winds with a long fetch are frequent.

Moderately
exposed

These sites generally include open coasts facing away from prevailing winds and
without a long fetch but where strong winds can be frequent.

Sheltered At these sites, there is a restricted fetch and/or open water window. Coasts can
face prevailing winds but with a short fetch (say <20 km) or extensive shallow areas
offshore or may face away from prevailing winds.

Very sheltered These sites are unlikely to have a fetch greater than 20 km (the exception being
through a narrow (< 30◦)) open water window, they face away from prevailing
winds or have obstructions, such as reefs, offshore.

Extremely
sheltered

These sites are fully enclosed with fetch no greater than about 3 km.

Ultra sheltered Sites with fetch of a few tens or at most 100s of metres.
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2.2 Remote Sensing

The field of Remote Sensing (RS) is rapidly expanding in use and application. RS provides

datasets from satellite or aerial-borne sensors, which, after some processing can be applied

to various fields of research. RS technologies were initially created for military use, however,

they have since been invaluable for urban planning (e.g. Masser (2001)), disaster detection

(Tralli et al. 2005) and management (Montoya 2002) and environmental sciences.

2.2.1 RS for Conservation of the Environment

RS for environmental studies has been in practice since the 1960s (Low & Clancy 1967),

and methods borrowed from RS for agriculture (Myers & Allen 1968) have been successfully

applied to conservative environmental practices. Recently, much research is being carried

out to extend the use of these technologies in the field of environment and ecology (see Kerr

& Ostrovsky (2003), Turner et al. (2003) for reviews). Particular attention is given to land-

cover, and changes therein (Anderson et al. 1976, Pfaff 1999, Mucher et al. 2000), for land-use

planning management and detection of illegal logging (Asner et al. 2002, Bocco et al. 2001).

RS and GIS are also highly beneficial to wildlife management – for habitat mapping (Viña

et al. 2008), for example, and tracking of larger animals (Ropert-Coudert & Wilson 2005).

Though use of RS and GIS has long been prescribed for use in study of aquatic environ-

ments (Maher 1987), recently, it is ever-more increasingly in use, for benthos mapping, coastal

and aquaculture management, and for detecting changes such as algal blooms (Kapetsky &

Aguilar-Manjarrez 2002, Urbański & Szymelfenig 2003, Lobitz et al. 2000).
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2.2.2 Aerial Photography for Marine Environments

While much of modern remote sensing uses multispectral satellite imagery for analysis, the

field is not limited to this higher bandwidth imagery. Classically, visible-light only aerial

photography was used, and indeed is still particularly useful with historic data where satellite

imagery is unavailable. Photographic data may be available only in black and white, and

this is typical of historic imagery. Ekebom & Erkkilä (2003) use black and white aerial

photographs for broad habitat mapping in a manual way, and give insight into the positive and

negative properties of different types of imagery for marine mapping. They also conclude that

shallow marine habitats can be identified using aerial photographs to some extent, though

even with colour images turbidity will reduce this capacity significantly. Where photographs

are in the RGB band, more useful analysis can be achieved, using the separate bands to

better distinguish vegetation for example.

Cuevas-Jiménez et al. (2002) showed that the use of RGB colour aerial photographs

could be used to successfully distinguish corals and seagrass beds in the Gulf of Mexico.

They combined the use of two <0.5 km2 aerial photographs with underwater photography.

The distinction was made in water of a consistent 4 m depth, on a clear day in clear waters,

and allowed the researchers to identify different types of coral and seagrass, though there was

an overlap of spectral signatures from the different benthic communities. Cuevas-Jiménez

et al. stress the importance of the limitations of their study, pointing out that favourable

conditions, consistent depth and selective use of photographs made classification easier than

it would be with mixed-quality data.
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Table 2.4: Factors affecting reliability of image processing for benthic cartography (from Pasqualini et al. (1997)).
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Pasqualini et al. (1997) describe a procedure for ensuring accuracy of benthic mapping by

aerial photography. They posit that due to the variability in the water layer above the benthos

– of depth, surface roughness, turbidity etc. – that there needs to be defined procedures for

coping with these differences. While the terms used are somewhat subjective (e.g. ‘Good

Quality’), Pasqualini et al. identify parameters (table 2.4) for consideration and a point scale

upon which reliability can rated when using aerial photography for benthic cartography.

2.2.3 Hyper-spectral Data for Benthic Mapping

There has been much research into mapping of diverse and sensitive marine environments,

particularly of coral reefs and seagrass beds (Zostera spp.) which are both highly productive

and highly sensitive systems (Waycott et al. 2009). As these systems are in decline, research

into monitoring them is now more crucial, and more abundant (e.g. Baden et al. (2003),

Urbański et al. (2009), de Vel & Bour (1990), Mumby et al. (1997), Pasqualini et al. (2001)).

Side-scan sonar – an acoustic system – has been effectively used to map seagrass beds

(for example Pasqualini et al. (1998, 2000)). It is widely used for bathymetric and benthic

sediments and assemblages (Brown et al. 2002, Cochrane & Lafferty 2002, Freitas et al. 2003).

Cochrane & Lafferty (2002) confirm use of Grey-Level Co-occurence Matrices (GLCM) (after

Haralick et al. (1973)) for better distinction of different bottom types from the resulting

sonograms. Side-scan sonar imaging is currently being used to assess the conservation value

of Serpulid reefs in the Scottish Loch Creran, a Special Area for Conservation (SAC) (Moore

et al. 2009). The current author and the research group at Glamorgan University are also

undertaking investigations into the use of this imagery with OBIA techniques to establish

position and size of such reefs.

In recognition of the need to identify and begin classification of the marine environment

(particularly with the incorporation of the EU Habitats Directive into UK law), Diesing et al.
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(2009) carried out research into identifying rocky reefs in the English channel. They used

2 echo-sounding methods along with underwater video transects to establish parameters

of a broad stretch of the channel south of the Isle of Wight, recording the bathymetry,

seabed character, benthic structures and point-sampled biotopes. From this information

they mapped three EUNIS habitat types – high-energy circalittoral rock, circalittoral coarse

sediment and deep circalittoral coarse sediment, and identify parameters for finding rocky

reefs elsewhere. They note that stable, cobble-based sediments are similar in faunal species

assemblage to that of exposed rock, and hence can be classified as solid (rock) habitats.

In Collin et al. (2008), the SHOALS (Scanning Hydrographic Operational Airborne Lidar

Survey) system is introduced as a means by which the benthic environment can be mapped.

SHOALS uses 2 signals to interrogate aquatic environments, employing near infra-red (NIR)

which is absorbed by water, and the visible green band which is highly penetrative in water.

The return times of these two signals can be used to establish benthic depth, the green

response used to determine benthic substrate and objects, and the other waveforms produced

by the radiative interaction are useful to establish land-masses and the water-air interface.

SHOALS depth data is affected by turbidity, and benthic response affected by depth due to

the conical spread of the laser.

SHOALS data is readily available for most of the North American coast, and has been

successfully used in benthic cartography. Cochran-Marquez (2005) classified aerial imagery of

the Hawaiian island of Molokai into 14 different substrates that describe the reef morphology,

using SHOALS data and SCUBA-dived transects. While SHOALS uses a non-imaging ap-

proach, depth (bathymetry) can also be established by imaging techniques – that is by pixel

value – with the log-transformed return signal having a negative correlation with depth (i.e.

the ‘darker’ the pixels, the deeper the water) (Gao 2009). These techniques were pioneered

by Polcyn et al. (1970) and Lyzenga (1978), and use two spectral bands with a correlated
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difference coefficient with changing depth between them. The techniques have limitations,

and require a known depth on which to calibrate the equation. Techniques from Lyzenga

(1978) and Stumpf et al. (2003) can also be used to linearise the spectral response of a

given substrate/assemblage through varying depth (equation 2.1). Linearisation of spectral

response through the water column. i refers to the spectral bands (e.g. R, G and B), while

Li∞ is the response of deep water for that band. Holden & LeDrew (2001) urges caution

with this assumption of logarithmic attenuation of the signal, however, and shows that this

is not reliable for short wavelengths.

Xi = ln (Li − Li∞) (2.1)

A further limitation of the above, and other aspects of aquatic remote sensing is the effect

of sea-surface roughness. The signal sent (or light detected) by the remote sense equipment

(whether it be hyper-spectral satellite or black and white aerial photography) is subject to

scatter from the sea-surface, should it be rough due to wind etc. Much research exists to

reduce the effects of this scatter, and have been described for example by Hochberg et al.

(2003). Such methods utilise the NIR band which is wholly absorbed from the water body,

and thus exhibits no reflectance, which can then be used to calibrate reflectance in the visible

light bands.

2.2.4 Object-Based Image Analysis for Classification with Definiens

The most recent methods of classification for both terrestrial and marine applications use

not only the pixel values (spectral response) of the target sites, but also the context in which

the pixel, or rather clusters of like-pixels, resides. This, the Object-Based paradigm of image

analysis (OBIA) and subsequent classification (OB-classification), uses pixel values along
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with some parameters for separation (such as weighting given to size and colour or shape)

to create distinct objects (‘image primitives’) which can then be analysed in a similar way

to classic RS methods (see section 2.2.5, below). For the most part, OBIA methods are

carried out using Definiens software, and this has been established as the industry standard

at the time of writing. Meinel & Neubert (2002) compare the segmentation algorithm used

by Definiens (known as eCognition in its earlier form) with that of other commercial and

open-source software packages and find it produces the best results, alongside ‘InfoPACK’.

Leduc & Lavigne (2007) confirm that feature extraction (of boats) with Definiens is highly

accurate, though it may take longer to set up initially (as it requires rulesets to be constructed

by the user). They note that due to the manner in which Definiens is instructed to perform

its classification, the accuracy of Definiens is wholly determined by the users ability to use

the software.

In terms of applicability, pixel-based analyses are out-moded for modern high-resolution

datasets. Blaschke et al. (2000) note that use of pixel-based analysis for high-resolution

imagery produces rather unnatural classifications with what is known as the ‘salt-and-pepper’

effect, whereby small, isolated 1-pixel classes occur in amongst other larger groups of different

1 (or more) pixel objects – the result being a rather confusing and non-intuitive class map.

The advantage of using objects over pixels for analysis at high-resolutions, then, are that

the resulting classification is inherently more ‘natural’. While there may be a small group

of pixels of class A that are within one object that is classified as B, and thus could be

argued to be incorrect, this is dependent on the descriptive resolution of the classification to

be used; as discussed above, hierarchical classifications – which are analogous to the way in

which humans naturally describe things, with reference to scale – allow for this, and OBIA

can handle such instances through application of refined scale (see below).

Blaschke et al. (2001) and Benz et al. (2004) introduce OBIA procedures for GIS appli-
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cations, describing how they differ from pixel-based processing. Benz et al. describe how

one important aspect of OB-classification removes the burden on domain experts (such as

foresters, marine biologists, urban planners etc.) to know the operational characteristics of

the RS technology; instead they are able to concentrate on the objects in their field of ex-

pertise (e.g. trees, maritime environments, buildings etc.), and apply rules to the objects

of interest – ‘domain-limitation’. The rules applied to the objects create a spatial, semantic

network where each object can access information about its surrounding objects, and each

iteration of rule application further enhances this.

Blaschke et al. and Benz et al. explain the benefit of using scale as a means to under-

stand and interpret an image; using successively closer scales can provide valuable context

information, for example information about a single tree is enhanced when knowledge of its

surrounds are combined: is it part of a forest, or is it part of an urban green-space? Using

scale in the OBIA paradigm has a close mapping to real world hierarchies of structure, and

is strongly applicable in the field of ecology – Wiens (1989) discusses the relative affects that

scale imposes on studies of ecological systems, and the precautions that must be taken when

evaluating studies that are limited by scale. Blaschke et al. notes that at increasingly fine

resolutions the boundaries between seemingly distinct patches (‘landscape elements’) become

more gradient-like.

Almeida et al. (2007) uses OBIA techniques in GIS to make urban population estimates.

They used 3 levels of scale – block/street, vegetation/builtup areas and finally the urban

objects (trees, grass, building, soil etc.). The type of building or settlement was then es-

tablished using various parameters (‘features’), for example the domain containing ‘Favelas’

(squatter settlements) could be limited in part by areas that do not contain swimming pools.

These building/settlement classes would be used in future to estimate population size and

distribution.
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Jiang et al. (2008) also describe methods for building extraction, but introduce a mech-

anism for differentiating trees and houses from a ‘tall’ class, derived using a Digital Surface

Model. Not having an available NIR band to compute the Normalized Difference Vegetation

Index (NDVI), they used the red and green bands to produce their own ‘NDVI’, which the

current research also makes use of (hereafter referred to as ‘NDVI after Jiang et al.’ or simply

‘NDVI’ – equation 2.2).

NDV I =
(G−R)

(G + R)
(2.2)

Bock et al. (2005) use the OBIA approach to mapping various habitat types across Europe,

using the hierarchical EUNIS classification system with Quickbird and Landsat ETM+ data.

Bock et al. use fuzzy membership functions to distinguish between main classes, then apply

Nearest-Neighbour classification for classes that have a large overlap in feature space – i.e.

where rules are too complex to be manually created, the classification is trained using sample

objects (figure 2.3). Bock et al. find a high accuracy of classification for many terrestrial

habitats, but discovers difficulty with accurately classifying some marine habitats, citing

issues with segmentation at the coastline. They also report that land cover types with objects

of variable size and shape, or poorly defined boundaries, return a less accurate classification.

Older datasets are posited for use with new OB-classification, as Bock et al. find a high

transferability of the algorithm across datasets – the importance of this possibility is stated

with regard to long-term conservation monitoring.

In Sims & Mesev (2007), assessment is made of the use of ancillary data, such as dig-

ital line graph, to enhance feature extraction. Sims & Mesev find that using these extra

data increase the accuracy of classification, for both manual (user) and automatic classifica-

tion. Pringle et al. (2009) compares pixel and OB-methods for the detection of changes in

habitat of Hoplocephalus bungaroides. They report on the problems of pixel based methods
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Figure 2.3: Procedural diagram for classification of terrain using the EUNIS classification
system, in an Object-Oriented manner. From Bock et al. (2005).

excluding a hierarchical classification, and find that OB-methods produced more accurate

classifications than pixel-based classifications, and also produced better results for images of

lower resolution.

Mathieu et al. (2007) use OBIA methods to extract and distinguish vegetation communi-

ties, using IKONOS data. They compare this method with the traditional manner of manual

classification from inspection of aerial photography. Mathieu et al. concludes that OBIA

methods may not provide as detailed a classification as by manual procedures with aerials,

but identify it as an efficient way to classify ecologically significant classes in a much shorter

timeframe.
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Benfield et al. (2007) applies OBIA techniques to the marine environment, and uses

two datasets (and two different resolutions) – Landsat ETM+ and QuickBird imagery – to

compare the classification methods maximum likelihood classifier, contextual editing and use

of Definiens (eCognition). Benfield et al. identifies that use of context sensitive classification

for marine habitats is particularly useful due to the strong correlation of marine habitats

with the particular environmental gradients (see section 2.1.1). This poses benefits over

traditional pixel-based methods that cannot take advantage of context.

Andréfouët et al. (2000) shows that the use of probabilistic methods of classification

derive more ‘natural’ boundaries, using fuzzy logic to state to what degree an object (or

pixel) belongs to a given class. This ‘fuzziness’ allows interpretation of thematic maps to

better correlate to real-world transitions in environmental gradients, for example, where an

object may be mostly in one class but tending toward another. The use of fuzzy membership

(where something is a a member of a class to a greater or lesser extent) can be leveraged to

create decision rules, and combined with the contextual information made available by OBIA

methods, powerful classification algorithms can be described.

2.2.5 Classification Background

Here, a brief overview of classic RS methods of classification, with an introduction into the

methods and steps used in OBIA classification.

Unsupervised Classification

Aside from manual classification, where a user draws around areas with vector tools to define

class areas, unsupervised classification is the most basic method available. Classification in

an unsupervised manner takes parameters of each pixel and assigns clusters of like-pixels to

a unique class. Pixels whose parameter values lie in more than one of the clusters’ parameter
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domains will be assigned to a class according to how close they are to each cluster group.

The user is left to use knowledge of the image or ground-truth data to determine what each

of the resulting classes represents.

This method, while semi-automated, does not use the object-oriented paradigm. Only

pixel values are used to determine their closeness (‘distance’) to a given class, and their

context is ignored.

Supervised Classification

Supervised classification, like unsupervised classification, borrows from pixel-based classifi-

cation, using pixel values to define the classes. The difference with supervised classification

is that the software is ‘trained’ to attribute certain pixels to certain classes based on their

values; this is achieved by the user informing the software of some example pixels that lie

within each class of interest – supervising, as the name suggests.

2.2.6 Object-Based Classification

The use of image objects over pixels is fundamental to object-oriented classification. While

each pixel could be considered an 1×1 object in itself, this rather misses the power of seg-

menting the image into larger (discrete) objects. Segmentation – which uses a ‘fractal net

evolution approach’ – is performed on the image according to fitting-functions of the relat-

edness of groups of pixels (Blaschke et al. 2001, Baatz & Schäpe 2000). Definiens achieves

this in various ways, but crucially the algorithms take combinations of scale, shape, colour

and compactness as their parameters, where values of shape and colour are inversely related

to each other and compactness describes the linearity of pixel groups – both these scales (i.e.

the range from colour to shape dominated and non-compact to compact) are defined between

the values 0 and 1. Scale is a unit-less parameter that determines allowed heterogeneity of
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an object (Navulur 2006, Definiens 2008).

Post-segmentation, the image is divided into small chunks, or objects; known as object

primitives, as they are simply based on the algorithm’s parameters for segmentation and

do no necessarily relate immediately to real life. These object primitives contain similar

pixels (according to the above parameters), enclosed by other objects that have significantly

dissimilar pixels within them. These objects form the basis of our classification technique.

Because each object is enclosed by other objects which are dissimilar, but have a relationship

to each other (see Tobler (1970) for the ‘first law of geography’ relating to proximity of real-

world objects), rules can be defined that use the context of one object to place it in a class,

as well as the pixel-based parameters of unsupervised classification (though these now relate

to an object’s mean pixel values rather than an individual pixel’s values).



Chapter 3

Methods

3.1 Study Site

The area of study comprises 172 km2, located to the north and south of Jersey, in the

Channel Islands. The 3 main reefs, the Paternostas, Les Écréhous and Les Minquiers are

located at co-ordinates (2◦12’37.69”W, 49◦17’31.19”N), (1◦56’6.35”W, 49◦17’30.662”N) and

2◦7’35.654”W, 48◦58’16.75”N) respectively (WGS84).

3.2 Data

3.2.1 Acquisition

Imagery and photographc meta-data were obtained from the States of Jersey Environment

Department. The images were captured by Fugro-BKS Limited, on the 16th and 17th April,

2003 between the hours of 13:06–14:59 and 14:12–15:36 (local time), from an average height

of 1086 m and 1342 m respectively. Only images acquired on the 17th cover our AOI.

The photography was flown using a film camera (Leica RC30) and exposed onto Agfa

37
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False Easting: 40000.000000000000000000
False Northing: 70000.000000000000000000
Central Meridian: -2.134999999999999800
Scale Factor: 0.999999900000000050
Latitude Of Origin: 49.225000000000001000

Name: GCS_ETRF_1989
Angular Unit: Degree (0.017453292519943299)
Prime Meridian: Greenwich (0.000000000000000000)
Datum: D_ETRF_1989
Spheroid: WGS_1984
Semimajor Axis: 6378137.000000000000000000
Semiminor Axis: 6356752.314245179300000000
Inverse Flattening: 298.257223563000030000

Figure 3.1: The Jersey Transverse Mercator Projection

X100 colour aerial film. The film was converted to digital format using a ZI Photoscan TD

high resolution roll feed geometric scanner. After the images were orthorectified they were

dodged (to even hot spots and vignetting effect) using Zeiss Image Station Raster Utilities

software and then colour balanced to remove radiometric variations using INPHO OrthoVista

software. There was no IR capability with the imagery.

After data acquisition, some further processing was made before the imagery was used

in the Definiens Developer software. A script was run over the data, using Python and the

ESRI ArcMap Python Library (arcgisscripting) to project the imagery into the Jersey

Transverse Mercator grid (figure 3.1), supplied with the imagery. The imagery was then

loaded into ESRI ArcMap 9.3 along with shapefiles of the surrounding territories (Great

Britain, Jersey, Guernsey, France; acquired from maplibrary.org1) to establish context. Sev-

eral image tiles were chosen containing representative contents of the entire dataset, in order

1http://maplibrary.org

http://maplibrary.org
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to familiarise the user with anticipated land cover types and common features.

Predicted tide data was acquired from the Proudman Oceanographic Laboratory (POL)

for the relevant dates, from the station in Jersey at St. Helier, and the station in Sark at

Maseline Pier.

Geological thematic layers were created from scans of Renouf & Andrews (1996).

3.2.2 Meta-data Use

The available Meta-data described the height, X Y coordinates and time at which the pho-

tographs were taken. This data was used in various ways – initially, the X Y Coordinates

were loaded into ArcMap with the imagery to establish the times at which each image tile

was acquired. This procedure allowed for estimates to be made of tidal state, after interpo-

lation from tidal data acquired from POL. Data from the two stations, St. Helier (Jersey)

and Maseline Pier (Sark) were plotted (to the nearest 30 minutes) and the resulting graph

used used to estimate the water height range over the photographs (figure 3.2).

Some error was introduced through using predicted tide data, plotting it to the nearest

30 minutes and also assuming linear tidal movement. From the graph in figure 3.2 the

tidal range of the imagery was determined to be between approximately 1 and 2 meters

above chart datum, with the introduced error not deemed to be significant, as the images

range across time and therefore some error pre-exists. With knowledge of the lunar cycle

(from the University of Texas McDonald Observatory2), it was established that the imagery

was acquired during a spring tide, thus for all intents and purposes the images provide a

reasonable exposure of the intertidal zone, excepting the lowest ∼ 1 to 2 m.

2http://stardate.org

http://stardate.org
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Figure 3.2: Tide plot taken from the two closest stations. The estimated tidal range has
been drawn in green, based on the timestamps of the photographs. Note the photo-capture
period has been corrected to GMT.
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3.3 Ground Truthing

In order to verify and further refine the classification derived in section 3.4, it was necessary

to carry out ground-truthing (field surveys). This serves as a calibratory tool for the further

development of the algorithm, to quantify accuracy, and for the determination of exact species

assemblage structure for these particular environments (as Trowbridge & Farnham (2004)

confirms).

3.3.1 Methods

Methods were taken after Bunker et al. (2001), visiting the site and establishing the major

biotopes by recording GPS co-ordinates along with a photograph, loading these points into

a GIS (ArcMap 9.3) and transcribing the biotope data to the MNCR BioMar shortcodes

thereafter. The survey methods described by Bunker et al. were used only in part, due

to the automated manner in which the current research intends to establish classification,

and the target descriptive resolution desired. Further, to work out what each biotope is on

the aerial photographs precisely, by hand, would be to bias the author’s development of the

algorithm such that it tends toward perfection, rather than producing a testable algorithm

that can be applied to establish major biotopes elsewhere.

Survey

The field survey to the Écréhous was made on the 7th of August, 2009, departing from the

fisheries offices at La Collette, Jersey at 0915 (BST). Arrival to the reef was at 1100, at

GPS co-ordinate N 49◦17’26.4”, W 01◦53’43.1” (WGS84). The tide was high on the reef at

approximately 0811 am (BST), at ∼ 10.08 m above chart datum (estimates based on St.

Helier predictions, figure 3.3).
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Figure 3.3: Tidal plot estimate for the St. Helier, Jersey (6–12th August, 2009). Source:
http://www.pol.ac.uk

Equipment

The following items were used in the survey:

1. GPS Unit – Garmin eTrex

2. Compass

3. Canon 40D DSLR with Canon EF-S 18-55 mm IS + hama UV filter

4. 1 m rule

5. Safety equipment including: Mobile phones, radio, rope, med kit.

Biotopes

The reef was walked from the landing point, up the main shingle bar in a North-Westerly

direction. Biotopes were assessed and recorded as they became apparent, and as the tide

permitted (figure 3.4). This form of survey is known as ‘purposive’ or ‘judgmental’ sampling,

whereby the samples are selected purposefully as they are determined to be representative
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– as discussed in McCoy (2005), this is a permissible and valid field method as the survey

team included a domain expert (a marine biologist) who is the end-user of any classification

maps produced.

Figure 3.4: Samples at the Écréhous – photo ID numbers shown.

Transect

A transect was carried out across the reef from a supralittoral area down to the sea to

establish zonation (figure 3.5). The transect line was recorded with the GPS and the track is

show in figure 3.6. A meter rule was placed and a photograph was taken, along with a GPS

reading.



OBIA for Classification of Rocky-Reefs – 3, Methods 44

Figure 3.5: Zonation across the reef at the Écréhous

Figure 3.6: Transect at the Écréhous
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3.3.2 Issues

Data from the GPS unit is subject to a degree of error, and this is typically up to 10 m.

During the survey, the GPS unit was reporting an accuracy of ∼ 7 m, and hence the data

points acquired may not be accurate. This is particularly important when considering the

upper littoral area of the shore, where the zones progress rapidly – the readings for the GPS

can be misleading, indeed, with reference to figure 3.6, it is clear that the starting point in

the South is not on the rock plateau where the transect actually begun.

3.3.3 Results

After the GPS waypoints were loaded onto the GIS, each photograph was assessed and given

an MNCR BioMar classification shortcode. Due to the descriptive resolution of the imagery

– namely that of flora and immobile fauna only – MNCR BioMar codes were used that

excluded faunal species (excepting Semibalanus/Chthamalus and Patella spp.), i.e. where

a shortcode existed that could be determined on site by identification of fauna only, the

code used was the lowest hierarchical tier above this that excluded faunal species. The main

biotopes potentially identifiable from the aerial photography are described in figure 3.7.

3.3.4 Observations

Some observations were made that may affect the results of the classification ruleset.

Bird Nesting and Guano Deposits

As discussed in section 1.2.3, Les Écréhous is a designated Ramsar wetlands site of inter-

national importance – i.e. it is of importance to birds. During the survey, several groups

of Common Terns (Sterna hirundo) were encountered, fiercely guarding both their feeding
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(a) LR.LLR.F.Pel – Pelvetia canalicu-
lata on sheltered littoral fringe rock

Figure 3.7: Potentially identifiable biotopes

grounds (where the survey team attempted to sample!) and the rock peaks they had chosen

for their nesting sites; the sites yet to be free of this year’s fledgelings. It was noted that

due to the guano deposits on the rocks, the reflectance of these rocks was altered – a fea-

ture known to be of use for distinguishing bird nesting sites (Schwaller et al. 1984). These

sightings are encouraging as the reef has previously suffered abandonment, probably due to

human activity and a strong algal bloom thought to disrupt the bird feeding patterns, causing

significant reductions in bird population levels3.

Algal Variation

One algal species whose identity was not immediately apparent when surveying demonstrates

some of the problems that may be encountered when carrying out the classification. This

particular specimen (figure 3.8) had a strong green colouration compared to its neighbours,

perhaps due to natural variation and hybridisation that occurs among algal species (Coyer

et al. 2002). This phenotypical morphing may affect what species groups can be distinguished

3http://www.societe-jersiaise.org/ornithology/2007-breeding-season-autumn-2007.html

http://www.societe-jersiaise.org/ornithology/2007-breeding-season-autumn-2007.html
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(b) LR.FLR.Lic.YG – Yellow and grey
lichens on supralittoral rock

(c) LR.FLR.Eph.Ent – Enteromorpha
spp. on freshwater-influenced and/or un-
stable upper eulittoral rock

(d) LR.LLR.F.Asc.X – Ascophyllum no-
dosum on full salinity mid eulittoral mixed
substrata

(e) LS.LSa.MoSa – Mobile littoral sand

Figure 3.7: Potentially identifiable biotopes
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(f) LS.LCS – Littoral shingle (g) LR.FLR.Rkp.FK.Sar – Sargassum
muticum in eulittoral rockpools

(h) LR.FLR.Lic.Ver.B – Verrucaria
maura and sparse barnacles on exposed lit-
toral fringe rock

(i) LR.FLR.Lic.Ver.Ver – Verrucaria
maura on very exposed to very sheltered
upper littoral fringe rock

Figure 3.7: Potentially identifiable biotopes
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(j) LR.FLR.Rkp.G – Green seaweeds
(Enteromorpha spp. and Cladophora spp.)
in shallow upper shore rockpools

(k) LR.HLR.MusB.Sem – Semibalanus
balanoides on exposed to moderately ex-
posed or vertical sheltered eulittoral rock

(l) LR.LLR.F.Fves.X – Fucus vesiculo-
sus on mid eulittoral mixed substrata

(m) LR.LLR.F.Fspi.X – Fucus spiralis
on full salinity upper eulittoral mixed sub-
strata

Figure 3.7: Potentially identifiable biotopes
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Figure 3.8: Unidentified fucoid (Mastocarpus spp.?), with strong green colouration.

from aerial images, as the resolution is likely to be too low (despite its ‘high-resolution’ status)

for this sort of determination. This is where context from zonation and topography should

play a key role in classification of this sort.

3.4 Classification Automation

The majority of work in this research has involved homing in on the best approach for

classification of the rocky reefs, given limited data. As described in chapter 2, there are

many well established ways of classifying land and habitats from imagery, however, the exact

parameters of our research are somewhat under-explored.

Peculiar to this research is the limited band width of the imagery available, namely that of

the visible light. Typically, Remote Sensing methods utilise at least the Red, Green, Blue and

Very-Near Infra-Red (R, G, B, VNIR respectively), and maximally have hyper-spectral ranges

extending into the microwave frequencies. The imagery made available for this research is

limited to only the RGB bands and hence much ‘quick’ domain-limiting analysis (such as

the masking of water bodies using the VNIR band) is not applicable. Below we examine the
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methods attempted to extract meaningful classes from the imagery.

3.4.1 Segmentation

Initially, attempts were made to segment the full resolution images – which contain 100 million

pixels – at small scales. Trials were carried out to establish the performance of Definiens

Developer on the available computer systems, to ascertain the feasibility of classifying all

image tiles at full resolution.

Methods were chosen after Benfield et al. (2007), who describe parameters to locate

extended reaches of sea, and pick out compact areas of reef. Segmentation was performed

at a very large scale (2000) creating ‘Level 000’, and a smaller scale (900) creating ‘Level

001’, to extract broadly similar areas; Benfield et al. used scale parameters of 1000 and

450 with 0.6 m/pixel resolution imager in this instance. Scales of 2000 and 900 were chosen

as the available imagery has a resolution of 0.1 m/pixel, and these scales were found to

provide good segmentation of smaller potential objects in the image such as the rock beds

in a similar way to Benfield et al.. Parameters for shape and colour were set to 0.2 and

0.8, compactness set to 0.6; after Benfield et al. – the compactness weighted high to define

compact areas of rocky reef. This segmentation, taking approximately 40 minutes resulted

in well defined broad-cover objects at Level 000 (Figure 3.9), and a further 35 minutes to

produce less useful objects at Level 001. Segmentation was also performed weighting the

RGB layers differently in an attempt to expose the most optimal segmentation, however, the

results were not significantly different at this scale.

Due to the time constraints of the work, and the performance of segmentation at this

resolution, it was decided to reduce the effective resolution of the images to that of QuickBird

data (0.6 m/pixel) as these data are well established in their use for classifying habitats (e.g.

Pringle et al. (2009), Benfield et al. (2007),Bock et al. (2005)) and thus can provide reliable
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Figure 3.9: Showing a 2000-scale segmentation of the training image (10 cm per pixel reso-
lution)
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habitat maps at broader scales. This allows faster segmentation, and broader classifications

to be made effectively which could then be exported as thematic maps and over-layed onto

the original high-resolution images for refined classification of areas of high interest (such as

the rocky habitats) in future.

3.4.2 Hierarchical Classification

The first step in classification is to reduce the image domain to find a region of interest (ROI).

This domain-limiting (top-down) approach closely maps to real-life hierarchical classification

schemes, and the top-down manner of classification has been posited as best-practice (see

for example Roff & Taylor (2000), Mumby & Harborne (1999), Connor et al. (2004)). With

this approach in mind, a prototype image breakdown was constructed by inspection of the

initial segmentation, and the real-life habitat classes contained within (figure 3.10). This is

not an attempt to mimic a true hierarchical tree – there are portions at a ‘higher’ level of

segmentation (i.e. broader scale) that will contain areas that need to be sub-segmented and

reclassified.

3.4.3 Multi-Resolution Segmentation and Domain Limiting

NDVI after Jiang et al. (2008)

While techniques exist to assist with the desired initial split into three broad classes (‘Sea

Dominated’, ‘Vegetation Dominated’ and ‘Mineral Dominated’), many of these methods re-

quire the use of the NIR band, which allows for both masking of the sea by (near) zero-return

values, and extraction of vegetation by very high return values, the NIR band was not avail-

able for the current research. As a substitute, the method described by Jiang et al. (2008)

is employed, using equation 2.2 (see section 2.2.4). Using 3 fuzzy membership value ranges,
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Figure 3.10: Top-down prototype of image breakdown.

the imagery is classified into objects that lie in the low, mid or upper NDVI range (where

NDVI refers to Jiang et al.’s substitute). Table 3.1 shows how the 3 ranges correspond to

areas of the image, also see figure 3.11 showing two test images (one from the Écréhous and

one from the Minkies) with object classification outlines displayed.

A note on nomenclature: Throughout the creation of the ruleset,

conformation to the following convention was attempted – ^Class

denotes a non-final, non-strict hierarchical class; class denotes a

temporary working class; Class denotes a final classification class.
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Table 3.1: NDVI after Jiang et al. (2008), final fuzzy ranges used to broadly split the imagery,
and how the image regions fit into these classes

NDVI
Range

Lower
limit

Membership
curve

Upper
limit

Image relationship

High 0.05 0.7 This range incorporates homoge-
nous areas of sea, sea with small
rocky outcrops, sea with sub-
merged vegetation and areas of
mixed algae.

Medium-0.02 0.06 Here, rockbeds and sandy areas
are represented, typically with
some brown and green algae.
This range also includes patches
of sea that are subject to a large
glint effect.

Low -0.4 -0.01 Rockbeds and sandbanks/shingle
bars, with emersion tolerant fu-
coids, lichens and barnacle com-
munities.
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(a) Les Minquiers (b) Les Écréhous

Figure 3.11: 1 km2 tiles, with the NDVI ranges applied. (Green = High, Orange = Interme-
diate, Red = Low)

Vegetation Extraction by Domain Limitation

After the initial broad split, the vegetation was extracted. Due to the way in which the

ranges of NDVI divided the imagery, particular forms of vegetation occurred in the different

divisions.

Typically, lower-eulittoral fucoids would occur in the ^Low NDVI regions which also con-

tain broad expanses of sea. In order to separate these out further, 3 classes were cre-

ated: Sea, ^Lower-Eulittoral Fucoids and ^Upper Infralittoral Fucoids, based on

two properties of the objects – Brightness and Mean Canny Edge (Red band) level. The

Brightness feature is calculated using the RGB bands; while Sea regions cover a broad range

of Brightness, the fucoid classes typically tend toward the lower limits. Mean Canny Edge

(Red band) is an edge-extraction algorithm (Canny 1986) which, for this process, used the

red band of the image (as the red frequencies are well-absorbed by water bodies) – regions
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of ^Low NDVI that have a high mean value for their Canny Edge layer will typically contain

small areas of rock-surface (for vegetated areas) or glint (on the sea). The combination of this

and the Brightness values allows for separation, though some confusion remains for areas

of sea that exhibit a high degree of glint (see section 4.2 for comments on how to overcome

this).

Figure 3.12: Establishing thresholds for parameters that identify small objects dominated by
algae. A highlights objects with relevant NDVI, the blue through green objects are ‘in range’.
B shows a classifictaion during refinement; objects coloured brown should all be macroalgae
– there are mismatches. C’s blue objects are in the desired range for Brightness. D is the
original image with segmented objects outlined in blue.

Similarly, the ^Mid NDVI regions contained some patches of algae. While not as substan-

tial as those in the ^Low NDVI regions, they are significant enough to warrant separation.

This was achieved by identifying regions of ^Mid NDVI that had a relatively high Standard

Deviation (SD); as this region is typically bright, a higher SD would mean that the region
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contains darker parts – algal patches. These regions were classified using an intermediate

class called ^Vegetated Eulittoral.

Once broad beds of vegetation had been classified, and regions including patches, these

regions were further segmented with parameters: Shape = 0.1, Colour = 0.9, Compactness =

0.6, Scale = 75, producing distinct objects at Level 001. The NDVI was then recomputed

for these objects and used in combination with brightness to identify the newly created

objects. The range values were established by means of hard thresholds, rather than fuzzy

membership (figure 3.12).

3.4.4 Quad-Tree, Region-Growing

An object-based approach used in cell biology to extract the stained nucleus of a cell, for

example, is to use quad-tree segmentation with region-growing (Definiens 2008). A fast

segmentation using a quad-tree algorithm is performed, then the brightest region of the

image (which will always occur in the nucleus, for this type of imagery) is identified and

this ‘parent’ object (known as the Parent Process Object (PPO)) used to find all adjacent

objects which are within a limited range of brightness compared to the parent. This action is

Figure 3.13: A typical cell image, for which the PPO-region growing technique is useful, and
likeness to protruding rock peaks.
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Figure 3.14: A seagrass meadow at Les Écréhous, mixed with S. muticum (photo – N.
Jouault, Société Jersiaise)

performed iteratively on all adjacent objects which do fit the criteria, treating each of them

as the new PPO for evaluation of those surrounding.

Because of the apparent similarities between a protruding, vegetated rock peak and bright

cell nucleus surrounded by less distinct organelles and cell membrane (figure 3.13), it was

posited that this algorithmic paradigm may be applicable. Though parallels can be drawn,

the colouration of the cell lends itself to this sort of analysis, however, it is more difficult to find

such a distinguishing feature of the rock peaks, without the use of NIR. Direct transferral of

this technique proved inappropriate due to this reduced distinction with many parent objects

being identified in the first instance. However, while iterative region-merging runs classified

the entire image as one class (a consequence of the shallow gradient of feature values across

the image), a single region-growing run proved adequate to classify most of the rock peaks

after a quad-tree segmentation with a scale factor of 45.

Quad-tree segmentation was further utilised to identify infralittoral regions that are poten-

tially vegetated. These regions, that may contain crucial resources such as seagrass meadows

(figure 3.14), are critical for many organisms (see section 2.2.3), and the methods used to

locate them were relatively simple in comparison to other classes in the imagery. Regions
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identified as ^High NDVI (with large areas of sea) or ^Intermediate NDVI (containing sea

with small rock peaks) that had not been classified as fucoids, but had been identified as

^Vegetated Eulittoral at Level 000 were segmented at Level 001 using the quad-tree

algorithm (scale 45), producing over a million small objects. These objects were then as-

signed a class of submerged if they were sufficiently dark (values less than 90) and had a

value over 40 in the red band (in order to distinguish shallow submerged vegetation from

deep water, where near-zero values occur in the red band). The resulting objects were tidied

up by merging and removing any very small objects (area less than 150 pixels), and the

remaining objects grown over the candidate objects to envelop small enclosed regions.

3.4.5 Context

Identification of enclosed regions is a useful algorithm that was taken advantage of in the

ruleset. This method demonstrates one way in which context can be used to infer the nature

of the objects. For example, given a net-like array of Fucoid Bed objects, any objects entirely

enclosed by these objects will translate to either peaks of rock protruding out from them,

or rockpools recessed within them – the difference identified by colour or NDVI. Another

area in which this form of enclosure context can be applied is to objects that have a parent

of Sea or ^Vegetated Eulittoral at Level 0, but no classification at Level 1, but around

which there exists a ring of submerged objects. Typically, the classification from the peak

identification (above) identifies at least one small object within this ring, and so a rule can be

constructed which uses the unclassified objects within the ring as candidates, and reclassifies

them as ^Rock Peak if they are in contact with a ^Rock Peak object. The resulting objects

are merged, and the process looped until there are no further modifications (the process is

guaranteed to terminate, since we only modify objects enclosed by the submerged).
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3.4.6 Nearest Neighbour Approach

One initial approach tested was the nearest-neighbour techniques that use samples from

the desired class to classify other objects which have similar values for given features. The

approach is useful for quickly classifying all objects in one image tile, though the user has

to select their samples carefully, and there is a tendency to keep selecting more and more

samples until all the objects expected to be classified are classified. This proves problematic

when transferring the algorithm to another test tile, as the exact type of objects in the

image may differ. Nearest-neighbour techniques were used to separate out objects that had

overlapping feature spaces; where possible, however, separation of the domain in which they

occur was attempted.

The procedure was applied to the ^Rock Peak regions, which incorporate barren rock,

the lichen bands – the dark band of Varrucosa maura that encircles fully emersed rock, and

the yellow and grey lichens (Xanthoria spp. agg.) that inhabit the emersed rock in the

upper spray zone, barnacle-dominated rock, sand, shingle and certain areas of fucoids on

rock. The fucoids had previously extracted due to their low NDVI value, a result of their

sparsity or position on the shore – some are subject to long periods of emersion and tend to

be lighter brown (after drying) and contain less mixed-in green algae (such as Enteromorpha

species which occur in the rockpools and mid-eulittoral zone). Samples were manually chosen

to represent these classes, after multiresolution segmentation with a scale of 75, and these

samples were iteratively refined, manually.

3.4.7 Multi-tile Classification

Due to software license restriction, the output classifications from individual tiles cannot

be stitched in Definiens to create an entire thematic layer. While they can be exported to
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individual 1 km2 tiles, and imported into GIS software such as ArcMap for example, and

processed after, it is desirable to classify across the entire image set. This is particularly true

when context is a factor – image edges have an effect on features such as whether or not an

object is enclosed by another class, for example. The procedure described for segmentation

and classification, above, was therefore tested on mosaiced versions of the imagery.

Processing of the imagery was done by creating an ArcMap-Python script to batch-

resample the imagery to 0.6 m / pixel. This was performed with the resampling algorithm

option set to ‘BILINEAR’, as it averages the surrounding pixels in a consistent manner, keep-

ing the resulting values within the original bounds. It also smoothes the data, maintaining

the gradient of values typical of RGB imagery. This process also converted the filetype from

ECW to IMG, and thus rendered the output readable in ERDAS Imagine 9.0, which was

then used to mosaic the imagery into ∼9-tile squares using the Mosaic Tool utility. Larger

mosaics, while desirable, proved too large for the memory requirements of Definiens on the

computer system available. The mosaics were then processed in the same way as the 1 km2

down-sampled (0.6 m) tiles.

Ruleset Summary

Above, the core techniques used to create the ruleset are discussed. Using the approaches

described, a final ruleset was formed and tested using the multi-tile mosaic. In the following

section this ruleset is explained and examined.



Chapter 4

Results and Analysis

The ultimate outcome of this research is a robust ruleset (algorithm) that can be used to

quickly classify large areas of imagery accurately, reliably and at ecologically meaningful de-

scriptive resolutions. Much of the time involved in the work was involved in experimental

trials of the methods described above (section 3.4), with refinements of both the parame-

ters used for specific rules, and refinements in the exact manner in which to approach the

extraction of different classes in the imagery. In this chapter, we examine the final rulesets

produced, and analyse their use in the context of marine habitat classification. We also in-

spect the final classifications produced by the rulesets (see plates I and II), and assess their

utility to ecologists.

4.1 Rulesets

The final product of the research exist as rulesets that can be applied to RGB-only imagery

of temperate rocky-shore marine environments, to a broad descriptive resolution described

by the classes in table 4.1. It should be noted that the research established static values for

63
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Table 4.1: Classes used in the classification, and their rôle in the ruleset, as final or working
classes

Classname Rôle Description

bright Working class Identification of peaks (bright areas, low
NDVI)

dark Working class Identification of fucoids on ^Rock Peak

find peaks Working class Quad-tree segmentation class, originally for
identification of peaks (but reused)

submerged Working class Identification of IR (?)

enclosed Working class Context rules of enclosure, temporary classifi-
cation.

^Low NDWI/NDVI Higher-tier class Areas of very bright land – some red algae &
lichens

^Intermediate NDWI/NDVI Higher-tier class Areas of rock and algae or rock peaks in sea

^High NDWI/NDVI Higher-tier class Sea dominated or greener algae

^Vegetated Eulittoral Higher-tier class Used for fucoid extraction from ^Intermediate
NDWI/NDVI

^Mid-Lower Eulittoral Fucoids Higher-tier class Used for fucoid extraction from ^High
NDWI/NDVI

^Upper Infralittoral Fucoids Higher-tier class Used for fucoid extraction from ^High
NDWI/NDVI

^Variable Supra/High
Eulittoral

Higher-tier class Used for vegetation extraction from ^Low
NDWI/NDVI

^Rock Peak Higher-tier class Broad class for any areas of extruding rock,
not heavily vegetated

Sea Final class Any areas dominated by water not otherwise
classified

IR (?) Final class Potentially vegetated infralittoral areas.

LR.{HLR.{FR,FT},MLR.{MusF,BF},
LLR.F,FLR.Rkp}

Final class Fucoids (also referred to as the class Fucoid
Bed)

LR.HLR.MusB, LR.MLR.BF Final class Barnacle dominated rock areas

LR.LLR.F.{Pel,Fspi} Final class High-Eulittoral Fucoids

LS.LCS.Sh Final class Shingle

LS.LSa.MoSa Final class Sand

LR.FLR.Lic.Ver Final class Verrucosa maura

LR {Red?} Final class Algae identified as potentially containing mo-
bile red species

certain parameters within the rulesets, and hence the resulting classification is susceptible to

differences in imagery. That is not to say that the rulesets could not be used on any other

dataset other than that described in the current research, only that edits would be required

to either the desired dataset, or to the parameters of the algorithms, before reliable use of

them can be made.
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(a) Multi-resolution segmentation dominated subprocess (b) Nearest-neighbour dominated subpro-
cess

Figure 4.1: Process flow diagrams
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(c) Quad-tree segmentation dominated subprocess

Figure 4.1: Process flow diagrams
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4.1.1 Multi-Resolution Segmentation with Domain Limitation

With reference to figure 4.1(a), the multi-resolution segmentation dominated subprocess is

relatively simple. This form of segmentation produces well defined objects when appropriate

segmentation parameters are used; the results of parameters used in the current research con-

firm the work of Benfield et al. (2007), extracting relatively discrete reef objects. The resulting

objects can, through careful process construction, be manipulated and classified effectively.

Particularly for the extraction of specific classes, this, combined with the domain-limiting

approach (as described in section 3.4.3, regarding vegetation extraction) produces promising

results. The classification for Fucoid Beds (MNCR BioMar code level 3 – LR.HLR.FR,

LR.HLR.FT, LR.MLR.MusF, LR.MLR.BF, HR.LLR.F and some of level 2 LR.FLR)

was trained on a single 1 km2 image from the Écréhous and tested on a 7×5 km mosaic of the

Minkies. The resulting classification (plate VI), while misclassifying small areas performed

well, though the number of classes in this image are fewer than those in other regions. Such

regions where there are more distinguishable classes, but where these classes have similar

features upon which the algorithm is constructed, errors can occur. Plate V shows a com-

parison (with transparent class polygons) of the somewhat erroneous classification (on the

right), and the training area, where the classification is much more accurate. This was the

result of one rule which used the result of a merge on the intermediate class find peak –

in the training image this was effective due to the small number of these remaining objects,

however in the tile shown in plate V, objects of this class were dominant (and hence the

merge produced large, broad objects), and the result is clearly incorrect. This highlights

the importance of training and testing the ruleset on imagery that is typical of the entire

dataset, and also reinforces the assertion of Leduc & Lavigne (2007) that the classification

result really is very much a reflection on the user’s competence and rigorousness.

This method also relates closely to the hierarchical (top-down) approach which many
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classification systems follow, and is most meaningful to human interpreters given different

levels of scale – scale being an important factor for consideration in ecological analysis (Wiens

1989). It is also a recommended approach – Blaschke et al. (2001) describe the use of multi-

scale delineation of imagery, how it may produce hierarchical classification models, and extol

and reaffirm the virtues of this approach cited in earlier literature. Ehlers et al. (2003), too,

use hierarchical methods in semi-automated analysis of biotype mapping to drill-down from

broad classes (such as ‘tall vegetation’) toward more refined classes (e.g. ‘coniferous forest’).

While the ruleset produced only classified at a broad level, this use of scale should be

harnessed to further refine the classification. Ideally the polygons produced from this clas-

sification would be used with the high-resolution (0.1 m/pixel) imagery, and within-class

differentiation performed (e.g. Fucoid Bed would be sub-classed into those MNCR BioMar

codes listed above). It was a limitation of the software license that prevented scaled-analysis

becoming part of the ruleset here, however, the original images could be processed outside

of Definiens to clip out the desired areas (e.g. with ERDAS Imagine), and these then used

to produce the refined ruleset.

4.1.2 Quad-Tree, Region Growing

The quad-tree based subprocess, depicted by the flow-chart in figure 4.1(c), was somewhat

more complex, and involved much more manipulation of objects than the multi-resolution

subprocess. The ‘seek, grow and merge’ approach that much of this part of the ruleset follows

is highly flexible – because it deals with small objects that are highly homogenous, it is well

suited to seeking out objects with a known spectral response, as exemplified by the stained cell

nucleus example described in section 3.4.4 (e.g. the brightest pixel, etc.). However, for very

heterogenous images, like those that form the basis of this research, the objects that result

from the segmentation tend to be only 1 or 2 pixels square, in many instances – reducing the
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Figure 4.2: The ‘salt-and-pepper’ effect, ringed in green, as a result of small objects from
quad-tree segmentation

advantages object-based methods add, to something more analogous to pixel-based analysis

– something of a step backward (figure 4.2). Despite this, it did prove useful, and the effects

of ‘pixelation’ (salt-and-pepper effect) from small objects was reduced by using rules that

examine distance to other objects and area of these objects after merging with others of the

same class. This method, therefore, should be considered carefully before use; however its

increased speed (compared with multi-resolution segmentation) is an asset.

4.1.3 Context in Classification

While the results of this research relied heavily on image-only evaluation, the author concedes

that for the re-use of the product ruleset to be of use, it must be adapted to make better use of

context. In the initial literature review, much was made of marine zonation patterns, and how

these are affected by abiotic clines such as wave exposure and salinity. Unfortunately, only

a limited amount of the information gathered about the reefs in this study was incorporated

into the classification itself; and this in an a priori fashion. A good example of one easily

performed enhancement to the classification would be by use of an ‘exposure’ dataset –

perhaps as a raster image, based on tidal stream rate (averaged or interpolated from the
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admiralty charts exemplified by figure 1.4). This form of ancillary data, if the resolution is

high enough, would be of great use for quickly honing the exact species assemblage for a

given area of classified fucoid bed, for example. This sort of ancillary data has been shown

to increase accuracy of results in land classification of roads (Sims & Mesev 2007), and while

they used a rather specific and well defined dataset, it supports the provision of such data for

refined classification in OBIA practices. Certainly, with topographic and bathymetric data

for the region, making predictions about the zonation based on these data combined with

the aerial imagery, and subsequent affirmations of the predictions through field survey, the

resulting ruleset of the current research would be much improved.

One instance where the use of context was successfully applied within the ruleset was for

differentiating between dark patches occurring on the rock peaks. In some instances these

had been misclassified as IR (?) (Infralittoral – likely to be vegetated), but could also be

V. maura bands, high-eulittoral fucoids such as F. spiralis or simply shadows. Proximity

to a super-object that had been classified as High NDVI was used as a comparator, and

the resulting object classifications were more robust, reverting these objects to a higher-

tier class (^Rock Peak) for later re-analysis. This method was also applied after nearest-

neighbour classification to re-classify areas of V. maura that were particularly close to sea

objects (zonation patterns suggest that this would be unlikely). As discussed above, the salt-

and-pepper effect – induced by small-object segmentation – was reduced by use of context,

reverting classifications of objects that were enclosed by a more dominant class, as well as

through distance and size constraints.

4.1.4 Use of Nearest Neighbour

In figure VII – an early test – which uses the tile originally estimated to contain most classes,

the classification is predominantly performed using nearest-neighbour samples, and it appears
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particularly good. Refinements would be necessary within the classes shown, as they do not

strictly conform to the MNCR BioMar classification scheme, but this level of classification

provides a useful point from which further refined analysis can be performed. However, even

at this broad level, there are objects that are misclassified – as this tile is the training tile

for this particular ruleset, these inaccuracies present concerns for replication.

4.1.5 Nearest Neighbour versus Hierarchical Approaches

Though there is apparent overlap of much of the feature space of objects produced by small-

scale segmentation, the method of working hierarchically down and identifying broad, vague

biotopes (which may initially not appear useful to ecologists), the domain in which these

smaller objects can actually be classified is limited, and thus accuracy is improved. This

concurs with Bock et al. (2005), whose rulesets demonstrate the use of fuzzy rules/thresholds

to limit the domain, and then use nearest-neighbour methods to separate out the final classes

if there is significant overlap. The initial domain limitation is very important because nearest-

neighbour methods cannot easily account of context without some higher-tier classification

with which to refer. In fact, they may well produce many confused results if either the

wrong features are selected for comparison, or poor samples are chosen (perhaps due to

uncommon classes residing in training images, or the reverse being true). Plate III shows

the broad classes (semi-transparent to expose the underlying imagery), and two nearest-

neighbour classifications using sample objects from the rock peak shown. The first trial is

acceptable, though areas of shingle are misplaced; the second trial uses more classes, and

some split classes in order to limit large fuzzy-membership curves being produced for a single

class that has a variable feature space (for example using two classes for sand, one that

contains detritus – this being significantly darker). The second trial appears to be more

accurate though there are significant errors for objects classified as LR.FLR.Lic.Ver, even
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after correction through context based rules. In terms of reliability, as asserted by Mumby

& Harborne (1999), where there is uncertainty it is perhaps more appropriate to reduce the

classification to a higher tier until a sufficiently robust classification ruleset is produced.

4.1.6 Consequences of the Results

As stated in Blaschke et al. (2001), the scale, data resolution and number of classes produced

are strongly affecting factors of how the classifications are used. The dataset in the current

research was down-sampled and hence the descriptive resolution must also undergo reduction.

Certainly, with improved resolution, differentiation between certain crucial feature-space val-

ues (such as standard deviation of RGB bands) improves, and finer classifications can be

made both for the current object scale, and through further segmentation, within.

It is recognised that automated classification may not provide the highest possible de-

scriptive resolution from the given imagery – indeed, the author experienced much frustration

in being able to identify distinct areas of the imagery by eye that were not easily translated

into the ruleset. However, the ability to quickly reproduce the classifications without hu-

man interaction, over larger spatial scales, and over an extended temporal scale makes this

form of classification valuable as an ecological baseline (for a given scale). This argument is

supported by the work of Mathieu et al. (2007).

With regards to misclassifications of sand (LS.LSa), shingle (LS.LCS) and areas of

littoral rock (LR), there is weight to the argument that the final classifications should be left

broad. Diesing et al. (2009) establish that stable cobbles support similar faunal communities

to exposed rock, while highly mobile sand beds support very different communities to stable

sand and beds of larger particle size. This disparity of species-level makeup means that

it would be dangerous to give hard classifications where there is uncertainty – again, an

assertation made by Mumby & Harborne (1999).
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4.2 Refinements

The work that has been produced, while establishing a useful baseline, can be much improved

upon. There are some simple refinements that can (and should) be incorporated, and issues

for which the author has yet to come up with a satisfactory resolution, as analysed below.

4.2.1 Glint

Glint is a problem for remote sensing of water bodies, and though there are methods to

overcome this (Hochberg et al. 2003), they are largely unavailable in this research due to the

lack of NIR band data (which, if present, would also aid the partitioning of land from sea).

The occurrence of glint on the sea surface was a major factor of misclassification in initial trial

algorithms. Initial trials involved nearest-neighbour sampling to attempt to distinguish sea-

glint from rock beds that had algae patches. Due to the similarities in many features of the

objects at lower resolution (such as standard deviation and mean of the bands and texture;

see figure 4.3 – an early experiment), even nearest-neighbour samples performed poorly for

classification of these areas. Despite the differences in the two samples shown in 4.3, the

objects at the ‘edge’ of the classifications (i.e. that differed significantly from the samples,

but remain part of the intended class) would not necessarily fall under the membership

rules imposed by the nearest-neighbour sampling, and hence produce misclassifications. The

confusion between glint and the rocky beds may have been further exacerbated by the nature

of the geology; Renouf & Andrews (1996) informs us that much of the rock on the reefs is

subject to ‘variable strike and foliation’ – the random nature of the grain on the rock resembles

the random glint pattern on the sea surface. While glint has some lineation from the wind

direction, it is not substantial enough at the used resolution to present a comparative feature.

A workaround was established, however, using the image meta-data; but this has not yet
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been incorporated into the ruleset. The glint typically occurs to the South-West (centered

approximately 450 m South and 450 m West) of the photographic nadir, due to the position

of the sun during the flight. Note that a single 1 km2 image tile consists of parts of several

single photographs, and so the glint occurs in different areas of each image tile. The provided

meta-data has the photographic nadir recorded, and by loading this data into ESRI ArcMap

and running the field calculator, it was possible to create new points around which glint was

expected to be centered (see plate IV). Though a crude calculation, this information can

be used as a thematic layer within Definiens to guide the classification as to how likely the

object is to contain glint, and thus perform more accurate classification split of mineral beds

versus sea with glint.

4.2.2 Conditional Rules

Due to the number of classes to distinguish in marine imagery, some techniques that are

very useful for extracting particular classes often fail for regions where these classes do not

exist. As an example, the domain-limiting fucoid classification ruleset performs well for areas

dominated by sediment and rockbed, but poorly where the dominant class in the image is

open water, and particularly deep water. It is this sort of scenario where conditional rules

may serve well as a constraint – for example, the entire image could be given a mean ‘sea’

rating, and the fucoid ruleset bypassed if this is high. Instead, a different ruleset would fire

that achieves high accuracy at detecting the infralittoral fucoids.

4.2.3 Transferral across datasets

The ruleset defined using the methods described above are intended to be re-useable. For

this to be feasible, modifications would need to be made to either imagery or the values of
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Figure 4.3: Sample comparison of Mixed Rocky and Glint – two intermediate classes.
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certain parameters within the ruleset. In the introduction to section 4.1, it is stated that

the ruleset is limited due to the static values for certain parameters; the consequence of this

is that running the ruleset over imagery that differs according to these values will result in

different (and perhaps unexpected or unreliable) classifications.

The ruleset was tested on one tile of imagery from the Gower peninsula, South Wales.

It was able to successfully classify the rock regions at the higher-level class ^Rock Peak,

and the sea, however refined classes were not reliably produced and most of the sea was

classified as IR (?) in the final part of the classification. This may be due to the imagery

being somewhat darker, and again, is a result of using fixed values for thresholds and other

parameter values in the ruleset.

4.2.4 Cascading Errors

While the use of context is clearly a powerful advantage of OBIA, it may incur costs for

rulesets that are not well tested. In situations where objects are reclassified by their rela-

tionship to neighbour objects may be problematic where such neighbour objects have been

misclassified themselves. As a simple (and somewhat contrived) example, imagine a looped

region-growing rule, using a seed class (call it class A) that is expected to only be in regions

entirely entirely enclosed by another (class B) and grows into class C; for some reason this

class A object has occurred in an open part region of class C, not enclosed by class B – then

this loop will envelop the entire connected region of class C objects. Of course there are

checks and tests that can be used to prevent this, but their use is noteworthy if the rulesets

are to be used on many and varied datasets.
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Plate I: Final classification output of Les Écréhous, without run of nearest-neighbour subprocess.
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Plate II: Final – full – classification output of Les Écréhous
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Plate III: Comparative classifications across Les Écréhous, without nearest-neighbour, and 2 attempts with nearest-
neighbour using different samples and classes
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Plate IV: Full Level 000 classification of the Écréhous mosaic
Note the ‘^Low NDVI’ areas tend to coincide with the calculated glare/glint points centres
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Plate V: Fucoid classification run on a non-training region of the Écréhous
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Plate VI: Fucoid classification run on part of the Minkies, trained on the Écréhous
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Plate VII: Classification result predominantly using Nearest Neighbour techniques having
split the image with a threshold based on NDVI



Chapter 5

Discussion and Conclusions

5.1 Use – for Ecologists and Management

One of the main aims of this research is to produce usable habitat class maps. The results,

while not as detailed as the research had initially set out to achieve are still of use, however.

In terms of management of remote areas like the reefs of the current research, and indeed

any landscape for which there needs to be some element of planning, there is a need to

begin compartmentalising and defining the main regions of the overall landscape (Blaschke

2006). This simplification of a complex system (i.e. the ecosystem) into a more simplified

and ‘labelled’ form allows us to understand such a system at differing levels, dependent on

the scale of this level (Wiens 1989). Thus, the step that the current research makes toward

providing a simplification (partitioning, classification) of the complex landscape of a rocky

reef, is valuable; it provides a baseline for both understanding of “what’s there?” and for the

further, refined-scale analysis of the now apparent, simplified compartments.

In terms of creation of habitat maps, particularly for the marine environment, there is

much work to be done. There is valuable work by researchers such as Roff et al. (2003), Jordan
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et al. (2005), Diesing et al. (2009) to establish the theory behind how such environments

should be classified, and the application of this theory to find or map areas of potential

ecological value. The current research hopes to add a facet to this toolkit, as a step toward

the ultimate goal of full knowledge and subsequent understanding of our marine habitats,

and this knowledge is ever-more valuable as threats to these ecosystems emerge and amass.

Prior knowledge and quantification of the such habitats will prove important for ameliorating

these threats, and by digitising this knowledge through application of RS, OBIA and GIS,

we are better able to process and manipulate it.

The ability to reuse the generated ruleset for future image analysis is of great importance.

There is necessity for constant re-evaluation of highly dynamic environments, such as that

of the intertidal zone of rocky shores, particularly where important, sensitive species (such

as Zostera spp.) occur, which require monitoring (Waycott et al. 2009). It is through the

development of these once-created, oft-used semi-automated methods that the relative cost

of such monitoring will be reduced – in man-hours devoted to ground surveying, and the

inherently associated monetary costs, even if this involves some form of manual input to the

classification process (Mathieu et al. 2007).

5.2 Comments on Feasibility and Recommendations

While the results of this research did produce ecologically meaningful classifications, the

author was left with a sense of dissatisfaction at the descriptive resolution of the classification

and robustness of the rulesets. While theoretically, there are myriad methods to improve the

ruleset to tease out the misclassifications and home in on high-resolution classes (such as

the exact nature of the fucoid beds), by far the most useful of these methods is through

technological upscaling. Through simple upgrade of software and increase of RAM, the
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author estimates that trials of improvements would be far more successful as out-of-memory

errors would be reduced, and the latest patches to Definiens would prevent several crashes

that regularly occurred. The speed increase in these trials would also go some way to increase

the rate and efficiency of ruleset development. The author therefore recommends that any

work using Definiens is not performed on minimum-specification hardware, in order to take

full advantage of the powerful workflow that Definiens permits, and to spare the sanity of

future researchers.

Further to this, and as a result of reduced capacity for processing, the author’s use of

smaller image tiles contributed to errors in classification. Much accuracy is lost where edge

of image objects would benefit from the context given by their absent neighbours. The effects

of this can be seen in the results, above (section 4), where fucoid beds at the edge of tiles

have hard, straight lines defining an edge where their should be a gentle curve – the result

of its remainder in the adjacent tile being of too small a scale to affect the initial split by

NDVI, for example, and thus exclusion from the fucoid detection algorithm occurs. This of

course can be refined by subsequent parsing of the image for hard lines (easy to detect, and

unlikely to occur in a marine environment), for out-of-place objects (such as dark patch on

a rock peak that cannot be attributed to shadow) and so forth, but again, the processing

power and time limitations of the current research did not permit for this.

However, the use of Definiens comes highly recommended, in literature (Leduc & Lavigne

2007, Meinel & Neubert 2002, Pringle et al. 2009), and by the current author. As with

much technology, the initial expenditure in terms of resources (time, cost etc.) seems to

outweigh the alternative, more traditional methods; the gains in speed and reusability once

the technology is acquired pays dividends, however, and this too is well recognised (Mathieu

et al. 2007).
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5.3 Further Work and Points of Interest

While there is much still to be done to refine the current research, the author has identified

directions in which it could progress. Below, a short discussion of these directions.

5.3.1 Topography from Zonation

In the current research, topographic data was unavailable. Much more effort went into

refining the algorithm to establish zonation patterns than would have been necessary if this

information was available as it is possible to use the topography and knowledge of MHWS

/ MLWS heights to produce a thematic map from which the classification can be limited.

It is possible, therefore, to reverse engineer this process, so that given the zonation, one

can determine the MHWS / MLWS heights from the classification. Providing the algorithm

produces reliable results, this may present possibilities for topographic extrapolation.

5.3.2 Tidal Stream from Fucoid Beds

As a point of interest to the author, the ‘mean direction of sub-objects’ feature was applied

at Level 000. Where fucoid beds are present, this feature results in mean direction equivalent

to that of the main flow of the tidal stream (see figure 1.4). It is thought that there may

be application of this feature, in combination with some assessment of ‘strength’ of direction

(perhaps by standard deviation), to extrapolate strength and main direction of tidal stream

flows, for example, where limited data exist. If location of certain species assemblages can be

inferred from abiotic factors, then it follows that certain abiotic factors can be inferred from

species assemblages – much in the same way that the scale developed by Ballantine (1961)

has its own somewhat ‘circular’ logic. This may be useful for identifying changes in current

over time, though the author concedes that this is perhaps a moot point given more reliable
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sensory technologies already tailored to this task.

5.3.3 Automation

While manual classification and mapping of habitats is highly accurate, vast areas of (inacces-

sible) land are not feasible to map once, let alone regularly for monitoring purposes. The use

of an automated algorithm for this purpose, as this research demonstrates, is highly feasible

– despite the inherently lower descriptive resolution when compared to manual classification

by field survey. An appropriate extension of the automation of classification would be to

automate change detection between consecutive years. This sort of analysis is currently used

to monitor changes in forestry, peatlands and other land ecosystems (Coppin et al. 2004, Dis-

sanska et al. 2009) and while application to a marine environment may not be as effective due

to the variable nature of the environment (and difficulty in getting ‘matched’ imagery that

arises from this variability), there is scope for it to be of major benefit to researchers. This

is particularly true for study of sensitive sessile communities, such as seagrass beds, which

are currently under threat (Waycott et al. 2009) and may prove invaluable with improved

robustness of the algorithm under different atmospheric and sea-state conditions.

5.3.4 Crowdsourcing

Further improvements could be made by ‘out-sourcing’ aspects of automated classification

checks and ground-truthing. At the time of writing, web-based GIS and indeed mass-

participation GIS projects are becoming widespread (Miller 2006, Goodchild 2007) and the

computer literate members of the public are familiar with online maps. The vast number of

users on the Internet can be mined for information, and various projects exist in order to

make use of human input for automated research purposes (von Ahn et al. 2008, von Ahn
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& Dabbish 2004) without burdening the user – known as crowdsourcing. Frameworks and

Application Programmer Interfaces (APIs) also exist to allow mapping facilities like Google

Maps, Bing Maps, Open Street Map etc. available to developers to do with what they please.

(Albors et al. 2008)

One such project, GeoDjango1, builds on the development of an extensible web frame-

work (Django2) by addition of spatial-database interoperability and manipulation. A GeoD-

jango application, when combined with sister projects that aim to solve development of

user-oriented websites (such as Pinax3) could be harnessed as a means to sanity-check auto-

mated classifications that are subject to uncertainty (such as that of a marine environment).

For example, users could be presented with a polygon and the image used to produce it and

asked to classify it out of 3 possible classes. Assuming no malicious users, the ‘best-guess’

could be derived by statistical analysis and any rogue classifications (after 10 users’ answers,

say) could be reported to researchers. An incentive to complete this task would of course be

required, but studies have shown this to be possible (von Ahn et al. 2006, von Ahn 2006).

This could be supplemented by allowing users to ground-truth data for themselves and

submit it to the webservice, which could later be used for refinement or verification of the

algorithm. Such as system would have been a tremendous boon to the author of the current

research as access to the area of interest was particularly difficult, and had not time have

been a limiting factor, this system would most certainly have found itself under development!

1http://geodjango.org
2http://djangoproject.org
3http://pinaxproject.org

http://pinaxproject.org
http://geodjango.org
http://djangoproject.org
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5.4 Conclusion

The current research assessed and refined techniques for classifying marine rocky-shore en-

vironments in a semi-automated manner using object-based image analysis using Definiens

Developer software. The result of the research is a set of methods that can be applied to

visible-spectrum, high-resolution aerial imagery in order to extract habitat classes of these

environments. The nature of the extracted classes constitute a level of scale that is useful as

a baseline upon which managers and ecologists can build. While the research did not pro-

duce the refined habitat classes the author had intended, the methods described show that

this is certainly possible, and with greater time and resources this could be easily achieved.

The research also shows that although the use of extended data is desirable, it is possible

to extract features from maritime landscapes with limited data — the visible band of the

electromagnetic spectrum provides adequately to distinguish many distinct ‘shore units’ and

their associated biotopes.
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